ZEITGEIST

A project at the intersection of computation, contemporary history and the arts.

Synopsis

The ZEITGEIST engine analyses a corpus of contemporary news articles and visualises them as a moving picture. This talk explains the conception, architecture, and design decisions in ZEITGEIST, and gives some thoughts on its interpretation.

Sections within this Talk

Conception and Motivation

- Demonstration
- Arciifitecture
- Computational Features
- Esemple Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

The foundation for ZEITGEIST originated at 21C3

- I attended a talk by the Austrian group Quintessenz on "Datamining the NSA".
- While Quintessenz performed the analysis by hand, I wanted to use computational techniques.

I believed computational techniques can produce a more objective and more comprehensive view.

- I was also keen to use visualisation to capture the audience's attention and imagination.

Is consistency an ethically "good thing"?

I was intrigued by the career of german politician Otto Schily.

- Mr Schily came to fame as defendand attorney for the leftist extremists RAF (red army fraction terrorist group).
- During our last legislative cycle, Mr Schily headed the Ministry for Interior Affairs -superficially observed -- the opposite of his former persuasions.
- This change of mind has happened over a long period of time. Other individuals are much more fickle.

How can text be visualised (1/3)?

The spectrum of Mr Schily's aforementioned activitys can be characterized along the dimension "control":

Civil
Liberties

How can text be visualised (2/3)?

If words occur frequently together ...

How can text be visualised (3/3)?

... they get placed more closely to each other:
high cooccurence leads
to close
placement
Pope $20 \longrightarrow$ Bush

- War
∇
5
Peace 4

How can the visualisation be animated?

The previous example considered the cooccurrence counts across the complete corpus equally.

Time Factor

- The time effect is obtained by scaling the co-occurrences with a bell-shaped (width $\sigma=300$) factor.
- Many movie-frames are computed with varying μ (three differing μ are shown on the left, 4000 are used).

$$
\operatorname{Factor}(\mu, \varsigma)=e^{-(x-\mu)^{2} / 2 \varsigma^{2}} / \varsigma \sqrt{2 \pi}
$$

Sections within this Talk

Conception and Motivation
Demonstration

- Arcinitecture
- Computational Features
- Example Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

Demonstration

Movie - Words only visualisation

- Movie - Image icon visualisation

Sections within this Talk

Conception and Motivation

- Demonstration
- Architecture
- Compuitational Features
- Eseample Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

Program Architecture

ZEITGEIST is written in JAVA.
The engine consists of a set of batch programs that must be run in sequence.

- Communication between the processing steps happens through files.
- All configuration happens through a JAVA properties file.
All parts of the system are optimised for utilisation of SMP machines.
- Component libraries have been employed where possible.

Sections within this Talk

Conception and Motivation

- Demonstration
- Arcinitecture
- Computational Features
- Esemple Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

Layout Algorithm (1/3)

A distance matrix M is produced from the Co-Occurence matrix C through the rule:

$$
M_{i, j}=1 / C_{i, j}
$$

- The algorithm „Graph Drawing by Stress Majorization" by Gansner, Koren \& North firom the AT\&T research laboratories - as seen in the "graphviz" utility - constructs a computational model of steel springs adjusted in length to the distances in the matrix M.
- The stress in this model is reduced via a computational minimisation method.

Layout Algorithm (2/3)

The algorithm starts with a list of n random 2D vectors describing the positions of the vertices and at each step reduces the stress function:

$$
\operatorname{stress}(M, X)=\sum_{i<j} \omega_{i j}\left(\left\|X_{i}-X_{j}\right\|-M_{i j}\right)^{2}
$$

- The algorithm stops when the reduction in stress is a factor less than 1e-5:

$$
\operatorname{stress}\left(M, X_{n+1}\right) / \operatorname{stress}\left(M, X_{n}\right) \leq 10^{-5}
$$

- The reduction step itself is absolutely brilliant and took me 9 weeks of reading to comprehend. Your math may be better.

Layout Algorithm (3/3)

... or it may not be

The reduction step works as follows:

$$
L^{\omega} X=L^{Z} Z
$$

- For the construction of the movie, the distance matrix M changes slightly between frames.

With a very similar distance matrix, the 2D vectors X from the previous frame -describing the coordinates of the words -are a very good approximation to the 2D vectors of this frame.
II Very few iterations are needed.

Solving Matrix Equations (1/3)

The reduction step really solves the system:

$$
A x=b
$$

- My particular system is dense (memory representation), and positive definite (mathematical property).
- My problem chooses 2,000 representative words, I compute 4,000 frames with 8 iterations each (plus some startup).
- The worst approach is to invert the matrix and multiply by the result vector ...
- ... with a naïve approach, it takes 3800s (more than an hour) per iteration. I tried.

Solving Matrix Equations (2/3)

I also tried:
JAMA - java matrix package
MTJ - matrix toolkit for java
MTJ+ATLAS - not on my architecture
OR - opsresearch.com
COLT - CERN research labs
None really was using SMP satisfactorily.

- Problem sizes up to 500 words can be computed in a day on my laptop.
- MTJ 360s/8 iterations, JAMA 120s/8 iter.s

Solving Matrix Equations (3/3)

I broke the CompSci mantra of „don't build it yourself!".

- My matrix library uses the Java 5 "concurrency" classes (and a backport to Java 1.4).
- It does not solve general systems of equations, but uses „Conjugate Gradient" to solve „positive definite" systems.
It uses an accuracy of $1 \mathrm{e}-10$, not $1 \mathrm{e}-1000$, which is good enough for my needs.
- It runs 8 iterations in a total of 5 seconds.

Sections within this Talk

Conception and Motivation

- Demonstration
- Arcinitecture
- Computational Features
- Example Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

Compiling and Configuration

Compiling the system is easy：

 Buildfile：build．xml
auto＿build＿depend：
auto＿build＿build：
－Running it creates the config file：

```
d:\users\chdqok\_privat\java\osj>jaua -jar app_zeitgeist_u2/app_zeitgeist_u2-bin -jar 0
2006-11-21 18:36:49 0: net.os10000.bldsys -app_zeitgeist_u2.Download.work<>
2006-11-21 18:36:49 langs=gn
2006-11-21 18:36:49 dir=/mnt/s1/zeitgeist
2006-11-21 18:36:49 msecs elapsed at done.: 50, total: 50
```

$d: \backslash u s e r s \backslash c h d r o k \backslash \ldots p r i v a t \backslash i a u a \backslash o s, j>$
－Now set up the path to the datafiles：
§ emacs app＿zeitgeist＿̌v2．properties

[^0]
Operating the System

Invocation is fairly easy ...

```
d:\users\chdqok\_privat\java\osj>java -jar app_zeitgeist_u2/app_zeitgeist_u2-bin.jar
usage: java -Xmx1500m -jar` app_zeitgeist_u2-bin.jar <nr> [ <nr> ...]
where <nr> is one of the following:
0) Download the HTML files from www-germanynews de
1) Gonvert HTML files to Stream of 'Document' objects
2) Join words broken with a minus-sign
3) Remove Punctuation characters
4) Find frequency of pairs
5) Find all words that are not nouns
b) Remove all known non-nouns
7) Combine Pairs
8) Find most preualent form of each word
9) Replace all words by their most prevalent form
10) Remove selected stopwords
11) Find frequency for each word
12) Remove most and least frequent words
13) Select words according to frequency
14) Convert from Document Objects to ArrayDocument objects
15) Convert from Document Objects to Arra
15) Compute the coordinates for the items
16) Prepare the coordinates for rendering
d:\users\chdqok\_privat\java\osj>java -jar app_zeitgeist_u2/app_zeitgeist_u2-bin.jar 0 1 2
2006-11-21 19:04:49 0: net.os10000.bldsys.app_zeitgeist_u2.Download.work<>
2006-11-21 19:04:49 langs=gn
2006-11-21 19:04:49 dir=d:\users\cbdqok\_privat\jaua\zeitgeist\
2006-11-21 19:04:49 msecs elapsed at done.: 190, total: 196
2006-11-21 19:04:49 1: net.os10000.bldsys.app_zeitgeist_u2.HtmlToStruc.work<>
2006-11-21 19:04:49 corpus=corpus
```

- ... you may want to give some of the steps enough memory (especially step 16)

Building the movie file

After step 15 has produced a 700mb text file with the coordinates ...

- And after the machine has managed to have step 16 load this file into RAM ...
- And if the disk has not filled up under the 4500 .png images ...
I use the dependable "mplayer" package to combine the frames and the mp3soundtrack into an avi-container:

Sections within this Talk

Conception and Motivation

- Demonstration
- Arciifitecture
- Computational Features
- Esemple Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

Artistic Decisions: Algorithm

Visualisation of co-occurence frequencies as weighted graph

- Choice of word focus through weighted individual occurrence count

Time indication through scaling with a moving Gauss-curve

Artistic Decisions: Linguistics

Choice of Nouns only

- Choice of Stop Words
- Pairing threshold of 30% :

$$
P(A \mid B)>30 \% \text { or } P(B \mid A)>30 \%
$$

"Wortagswert".

- Ordering of Steps
- Choice of range to remove from most frequent side (200)
Choice of range to use for layout (2000)

Artistic Decisions: Layout

Bell width is 300 days, less is too hectic, more ignores short-lived events.

- The distance matrix is tamed so that pow(dist_max,f)/pow(dist_min,f)<2.
- Coordinates are distorted through a rectangular fish-eye lens.

Importance is shown in font-colour and fontsize, icon scale and transparency are chosen quadratically.

Artistic Decisions: Candy

Eye Candy
Choice of Typeface
Choice of Background
Choice of Framing

Choice of Image search engine
Ear Candy (you don't want to try this)
Choice of soundtrack

Sections within this Talk

Conception and Motivation

- Demonstration
- Arciifitecture
- Computational Features
- Esemple Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

Aesthetics \& Ontology (1/3): Words

The representation is faithful in the sense that the frequency distribution matches what we got in the media.

- Both, positive and negative association brings a subject close to its object, so the word "labour" is associated with both the words „union" and "employer", but in quite different ways.
A proper solution to this problem is „AIhard".

Aesthetics \& Ontology (2/3): Images

The problem of interpretation is even more apparent when representing words through images

- Choosing the first image a search engine presents not always yields desirable results:
beef - shows a „fricassee" of sorts
labour strike - „pink T" logo
Steffi Graf - lightly clothed model
Tour de France - split in two tire frame („tour") \& map of France
- Getting a cabbage for „Kohl" prompted the inclusion of pairing („Bundeskanzler Kohl")

Aesthetics \& Ontology (3/3): Recognition

An interesting insight was the comparison between expected and measured cooccurrence frequencies:
„Terror" less frequent than expected "Taxes" less frequently than expected „Iraq" less frequently than expected
Football-related terminology less frequently than expected

Sections within this Talk

Conception and Motivation

- Demonstration
- Arciifitecture
- Computational Features
- Esemple Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

Future Experiments

Use of different corpus of documents.

- Use of majority voting between search enigines on pictures.
- First steps in semantic representation t'rsough facilities like WORDNET, or search engine statistics.
- Boosting of particular words, -- and through the connections their neighbours:

Sections within this Talk

Conception and Motivation

- Demonstration
- Arciiftecture
- Computational Features
- Esemple Run
- Artistic Design Decisions

Interpretation of the results

- Outlook \& Future Experiments
- Credits and Sources

A great many thanks to ...

My wife's patience with my arcane hobby AT\&T research: the excellent algorithm

- J.R.Shewchuk „An Introduction to the Conjugate Gradient Method Without the Agonizing Pain"
IBM: letting me use an OpenPower 8cpu
Ebay: selling me an IBM Netfinity ($4 x$. 7 GHz 2 mb cache, 2gb RAM, €151,--)
- Countless java package authors
- William Gibson for inspiring visions of the matrix

Downloads

You can find the software at:

http:///www.os1000.net/fs/java/app_zeitgeist_v2/index.html

- I kindly ask that you download the corpus pack from my site and only fetch an update from the News server.
http://www.os10000.net/fs/java/app_zeitgeist_v2/corpus.zip You can find the movie at:
http://www.os10000.net/fs/java/app_zeitgeist_v2/movie_wds.avi http://www.os10000.net/fs/java/app_zeitgeist_v2/movie_ico.avi

The End

Thank you for your time and attention.

[^0]:
 net osig口冋ロ．bldsys app＿zeitgeist u2．Seruer－data dir＝／mnt／si／zeitgeist

